Instant Architecture in Minecraft using Box-Split Grammars

Markus Eger
meger@cpp.edu
Cal Poly Pomona

Figure 1: The Parthenon in Minecraft, generated using Box-Split Grammars

KEYWORDS

procedural content generation, shape grammars, minecraft

ABSTRACT

In this paper, we present a formalism we call Box-Split Grammars
for the procedural modeling of structures in Minecraft and similar
environments. Our grammars are based on previous work on split
grammars and box grammars, where rules define how a given box,
labeled with a non-terminal symbol, can be split into smaller pieces,
and how subsequent rules are to be applied. We represent grammar
rules as ordinary, well-structured python functions, allowing the
integration into existing systems, and demonstrate their utility by
recreating variations of ancient Greek temples using a few simple
grammar rules.

CCS CONCEPTS

« Applied computing — Computer-aided design; « Computing
methodologies — Shape modeling; « Theory of computation
— Grammars and context-free languages.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FDG °22, September 5-8, 2022, Athens, Greece

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9795-7/22/09...$15.00
https://doi.org/10.1145/3555858.3555865

ACM Reference Format:

Markus Eger. 2022. Instant Architecture in Minecraft using Box-Split Gram-
mars. In FDG ’22: Proceedings of the 17th International Conference on the
Foundations of Digital Games (FDG °22), September 5-8, 2022, Athens, Greece.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3555858.3555865

1 INTRODUCTION

Having computer programs that can produce a wide variety of
different artifacts with minimal human input is one of the key
tenets of Procedural Content Generation. The techniques that are
employed to achieve this are as varied as the possible target output:
Everything from planning to generate narratives, constraint solving
to generate levels, Markov models to generate music, to Neural
Networks to generate video renderings has been used. In this paper,
we focus on the use of formal grammars to define structures within
a Minecraft world. While grammars are often used to parse input,
such as computer code, they have a rich history in a generative
context as well, and have been used to generate everything from
plant models [11] to text [3]. Our own main goal is to provide a
convenient and expressive framework to generate 3D structures
within the world of Minecraft.

The main contribution of this paper is twofold: First, we present
a grammar model based on existing Box Grammars and Split Gram-
mars, which we call Box-Split Grammars. This model provides

https://doi.org/10.1145/3555858.3555865
https://doi.org/10.1145/3555858.3555865

FDG ’22, September 5-8, 2022, Athens, Greece

a way to compactly define geometry using (context-free) gram-
mars, while allowing the use of stochastic evaluation and rule con-
straints to generate a variety of geometry. Second, existing grammar
models are typically built in a domain-specific framework, while
our implementation is written, and fully integrates with, Python,
even expressing grammar rules as Python functions. This makes
it straightforward to integrate our grammar with other systems,
and only delegating part of the content generation to the grammar
formalism. To demonstrate the capabilities of our system, and its
integration with another system, we present several examples of
generated structures inside Minecraft, using MCEdit as the devel-
opment platform/backend. Before we discuss our own grammar
formalism in more detail, we will briefly discuss relevant related
work.

2 BACKGROUND AND RELATED WORK

The use of grammars to non-text applications, in particular shapes,
goes back to Stiny and Gips [14]. In their Shape Grammars, grammar
rules consist of a mapping of a geometric substructure (a “shape”)
to other geometry. Starting with a basic shape, grammar evaluation
proceeds by replacing substructures according to these rules. An
actual implementation therefore has to perform geometric queries
to determine which rules apply in each step, taking any necessary
transformations such as rotation or scaling into account, making
these grammars challenging to implement, as well as to define. More
recent Shape Grammar developments have therefore eschewed
such geometric rules in favor of labeled non-terminal symbols
that replaced with multiple parts, which are, in turn, labeled as
non-terminal symbols again, or replaced with a terminal symbol,
i.e. actual geometry. This modern variation of Shape Grammars
originated with work by Wonka et al. [17] which they called Split
Grammars, as the principal operation is replacing a larger (geo-
metric) scope into smaller pieces and applying subsequent rules
to them. However, in order to be able to produce arbitrary 3D-
structures, this first attempt used two separate grammars, one to
define the geometry (which may use geometric queries) and an-
other, which they call Control Grammar to propagate attributes,
such as style information. Subsequent work by Miiller et al. [9]
addressed this by formally defining the “split” operation that lends
its name to these grammars, and established the CGA Shape system.
The generation of arbitrary 3D structures is handled by applying
transformations to the scopes, as well as by allowing a variety of
complex split- and geometric query-operations. CGA Shape has
since been integrated into the ArcGIS CityEngine [8], and is widely
used in many application areas, including Archeology [10], and
city planning [5]. However, the focus of the system is on precise
forward modeling of arbitrary 3D structures, while our system is
targeted at providing more generative power, in a more restricted
voxel-based environment.

An alternative approach to Shape Grammars, that simplifies the
implementation and also makes grammar rules easier to define,
operates only on axis-aligned boxes. This approach traces its roots
to work by Hohmann et al. [7], that describes grammars that were
inspired by CGA Shape, but rather than adding more and more
complex shapes and rules, their approach distills them down to the
simplest possible form: Each scope is an axis-aligned box labeled

Markus Eger

with a Non-Terminal Symbol, and a rule splits a box into smaller
boxes, each again with its own label. Most interestingly, grammar
rules are expressed as functions in the Generative Modeling Lan-
guage [6], allowing them to interact nicely with the language’s
other facilities for procedural modeling. While having access to a
wider variety of control structures can be helpful, by using function
calls grammars become deterministic in their evaluation. While our
approach also uses a similar approach of axis-aligned boxes and an
encoding of grammar rules into an imperative, function-based style,
we also provide stochastic evaluation and rule constraints, allowing
users to define true options in their grammar rules. Finally, while
not directly relevant to our work, Thaller et al. [15] expanded upon
this same approach by allowing the use of arbitrary convex polyhe-
dra. In the same article they also coined the term Box Grammars
when discussing the basis of their work, leading us to name our
approach Box-Split Grammar as a combination of the two lines of
work discussed so far: We combine the non-deterministic, flexible
rules used by Split Grammars with a procedural, programming-
language based approach based on Box Grammars. While the in-
dividual pieces we use were present in different approaches, their
combination is novel and particularly applicable to a voxel-based
environment.

Finally, before we describe our approach in detail, we briefly
want to discuss our chosen backend. While our grammar system is
output-agnostic, Minecraft presents an attractive first target. Inter-
est in procedural generation in Minecraft has given rise to the gen-
erative design in Minecraft [13] settlement generation competition,
where a wide variety of approaches have shown promise, including
Answer Set Programming [16] and cellular automata [4]. Partic-
ipation in the competition has seen a steady increase every year
[12], indicating sustained interest. Our grammar-based approach is
aimed at providing a novel way to define procedural content, with
an eye on the ease of integration with other approaches.

3 BOX-SPLIT GRAMMARS IN MINECRAFT

As described in the previous section, our approach can be seen
as combining appealing features from Split Grammar with those
of Box Grammars, resulting in what we call Box-Split Grammars.
On a high level, our grammars take a box, assign it a label, and
non-deterministically apply an applicable rule to the box, which
may split it into smaller boxes, assigning labels to each.

3.1 Boxes

Much like the constituting components of a formal grammar are
non-terminal and terminal symbols, our Box-Split Grammars repre-
sent them as boxes. Each such box is axis-aligned, and has integer
size in each dimension, and therefore corresponds to the set of
voxels contained in a rectangular hexahedron. In other words, each
box is defined by an origin voxel (ox,0y,0,) and three integer
sizes (Ox,dy,z), and spans all voxels (x,y,2) with (0x < x <
0x +6x) Aoy <y <oy+3dy) Aoz <z <oz+0,). However, each
of our boxes additionally stores a local orientation, which means the
voxel coordinates (x,y, z) mentioned above may not refer to the
global x-, y- and z-dimension in that order, but rather any permu-
tation thereof. For example, our grammar may use a box with the

Instant Architecture in Minecraft using Box-Split Grammars

global Minecraft origin (0, 1, 2) and size (3,4, 5), but treat it as a log-
ical box with origin (2,0, 1) and size (5, 3, 4). This allows grammar
rules to use consistent directional information, even if the resulting
(sub)structure should be rotated within the world. The translation
from local to global coordinates is handled automatically, and we
will discuss how the user can control this reorientation below.

As with each grammar, our grammars also need a start symbol,
which is a designated non-terminal symbol, and accordingly also a
box that is attached to said non-terminal symbol. In the Minecraft
editor, one way to obtain such a start symbol box is for the user
to select it in the game world, and pass it to our grammar. With a
start symbol in hand, we can now apply grammar rules.

3.2 Split Rules

While formal grammars for text-applications can simply define that
a non-terminal ought to be replaced with a sequence of terminal-
and non-terminal symbols, our Box-Split Grammars additionally
need to specify what happens to the box. The box corresponding to
the non-terminal symbol represents the space associated with that
symbol, and in order to replace it, a grammar rule has to specify
how the box is split into smaller boxes, which are then associated
with the terminal- and non-terminal symbols at the right side of
the rule. A (split) rule may be defined as:

N — ABC [split(x, [1,2,1])]

The semantics of this rule are to take a box associated with the
non-terminal N, and split it into three pieces along the local x-
dimension, one with size 1, one with size 2 and another with size 1.
The first of these boxes is then associated with the non-terminal
A, the second with B and the third with C, each of which may in
turn have their own rules for how to further split the resulting box
(perhaps in a different dimension), or replace it with a terminal
symbol (which will fill the entire box with a concrete block).

To make our grammars actually usable in practice, we represent
each rule as a short python function with a predefined structure.
The rule described above could be written in python as follows:

@rule
def N():
with split (Dimension.X, [1,2,1]):
A(), B(). €O

Each rule consists of a decorator that registers it with our system, a
name, and the desired split operation. Then, a non-terminal symbol
is assigned to each resulting box. Note that, as we will describe
below, while this is written as an ordinary function call, the @rule-
decorator actually intercepts the call, allowing each non-terminal
symbol to be associated with multiple rules.

While we can already describe a variety of different structures
using this basic split operator, it will result in an error if we attempt
to split a box into pieces that do not completely partition it, i.e. that
either leave parts of the box unassigned, or try to assign boxes of a
larger size than we have, as would be the case if the box associated
with N did not have size exactly equal to 4 in its x-Dimension. In
order to give additional flexibility to grammar authors, and similar
to Hohmann et al. [7], we also allow splitting into relative sizes,
for example to cut a box into two pieces, where one is twice the
size of the other. Relative sizes are indicated by negative numbers

FDG ’22, September 5-8, 2022, Athens, Greece

and can be freely mixed with positive/absolute ones. For example,
split(Dimension.X, [-1,2,-1]) would split a box into three
pieces in the local x-dimension where the center piece is 2 units
long, and the other two pieces equally divide the remainder of
the box. A split may only contain relative sizes, in which case the
entire scope is allocated proportionally, it may only contain relative
sizes, which must add up to the total size, or a combination of the
two. In this last case, the absolute sizes are allocated first, and the
remainder is allocated proportionally.

However, since our boxes can only have integer-sizes, we may
need to round the resulting box sizes. We support three rounding
modes: TRUNCATE (the default), will ignore any remainder, BEGINNING
will start assigning the remainder to (relatively sized) boxes at the
beginning of the list, while END will assign the remainder starting
from the end of the list. Figure 2 shows several grammar rules that
split a given scope along its X-axis. Each split contains a combina-
tion of absolute and relative sizes, demonstrating how the scopes
are distributed among these scopes. Particularly note that split3
divides the block into three pieces of sizes -2, 2, and —3, with neg-
ative numbers indicating relative sizes as indicated above. For our
given scope of width 10, first the piece with absolute size 2 will
be allocated, and then the remaining 8 blocks will be distributed
between the relatively sized scopes. As 8 is not evenly divisible by
5, this leaves 3 blocks unallocated. If our original scope had width
12, the same split would have allocated 4, 2, and 6 blocks to its three
sub-scopes instead, covering the entire width.

Note that another potential rounding mode, which creates an-
other box with any remainder is problematic, because it may or
may not create an additional box, making it uncertain if an addi-
tional non-terminal symbol is needed to consume this additional
scope. We provide an alternative way to address the case where the
desired behavior is to separate the remainder using rule constraints,
described below.

3.3 Coordinate Reorientation

As described above, each box keeps track of its own, local coordinate
system, and splits are performed along these local dimensions. The
purpose of these local coordinate systems is to facilitate rule-reuse.
For example, a wall of a castle may require crenellations at the
top, which can be defined as a split along the direction of the
wall, alternating between placing a stone wall, and keeping an
empty space. However, some walls will run along the (global) x-
dimension, while others will run along the (global) z-dimension (y
is the global “up”-direction), which would require separate rules.
Similarly, if a grammar is to place an entire castle, we might want
the “front” of the castle to be whichever side is wider, in order to be
able to comfortably place a gate and guard towers. For either case,
having local coordinate systems allows the grammar to be written
independently of the rotation of the (sub)structure. We therefore
provide an operator reorient in addition to split. For example, a
grammar rule may exchange the x- and z-dimensions as follows:

@rule
def N():
with reorient(x=Dimension.Z,
z=Dimension.X):
M()

FDG ’22, September 5-8, 2022, Athens, Greece

@rule
def splitl ():
with split (Dimension.X, [1, 1, -1]):
fill (),void (), fill (MARBLE)

@rule
def split2 ():
with split (Dimension.X, [1, -1, 2]):
fill (),void (), fill (MARBLE)

@rule
def split3 ():
with split (Dimension.X, [-2, 2,
fill () ,void (), fill (MARBLE)

-3]):

@rule
def split4 ():
with split (Dimension.X, [-1, -1, -3]):
fill () ,void (), fill (MARBLE)

(a) Four different split rules with absolute and relative sizes.

Markus Eger

el el Tlag g laf
" | IHIHI#IH

(b) The result of applying the split rules to 10 blocks in one row.

Figure 2: Correspondence between split rules and the resulting blocks.

The non-terminal M will then operate on a box that is the same as
the box that corresponded to N, except that its x and z-dimension
are flipped. reorient will automatically determine any missing di-
mension from its parameters: If two dimensions are given, the third
(local) dimension is set to whichever global dimension remains unas-
signed. If only one dimension is given, it either switches two dimen-
sions (i.e. it would have been enough to only pass x=Dimension.Z
in the example above), or a local dimension would be reassigned to
the global dimension it already represents, in which case no other
dimensions are changed either. Some (sub)structures may require
to be built in alignment with the global coordinate system, which a
user can specify with Dimension.WORLD_X, Dimension.WORLD_Y,
or Dimension.WORLD_Z. Finally, the special values
Dimension.SMALLEST and Dimension.LARGEST can be used to align
a local dimension with the dimension in which the box has its
smallest or largest extent. Note that dimensions that are explicitly
assigned take precedence over these special operators, so that e.g.
reorient(x=Dimension.LARGEST, y=Dimension.Y) will never
set the local x-dimension to the previous local y dimension.

A common pattern is to split a box and then reorient all of
its pieces, we also allow to specify the reorientation directly as
additional parameters on the split-function in the same way.

3.4 Iteration

One advantage of expressing grammar rules as code is that we can
make use of control flow statements to guide the generation process.
A particularly common scenario is the application of a repeating
pattern of structures along an axis, such as columns lining a temple,
windows along the front of a building, or crenelations on top of a
castle. Our grammar system includes the capability to let a split

repeat as often as it can fit along the given dimension by setting
the repeat parameter to true. Such a split returns an object that
can be iterated over with a while loop and which will continuously
set the current scope. Figure 3 shows an example of how such a
repeating split can be applied to scopes of different sizes.

3.5 Probabilistic Rules

As previously mentioned, our encoding of grammar rules as python
functions invokes the appearance that we are calling these func-
tions deterministically, which would deter from one of the core
ideas of our grammars, which is to generate a variety of structures.
However, what the @rule decorator actually does is to extract the
name of the function and register it in a dictionary, as one of the
possible ways to resolve a non-terminal symbol. It then replaces the
function with one that performs a lookup in this dictionary, choos-
ing a rule at random from among all that are applicable (this also
allows us to place constraints on when a rule is considered “appli-
cable”, see below). Grammar authors can control this probabilistic
behavior by specifying (relative) probabilities for the different rules
corresponding to the same non-terminal symbol:

@rule(probability =4)
def N():
rule content

@rule(probability =1)
def N():
other rule content

Whenever the non-terminal N is assigned to a box, by calling
N(), one of these two rules will be chosen at random, where the

Instant Architecture in Minecraft using Box-Split Grammars

@rule
def iteration ():

FDG ’22, September 5-8, 2022, Athens, Greece

pieces = split(Dimension.X, [1,1], repeat=True)

while pieces:
fill (), void()

(a) A split that iterates a fill/void pattern over the entire width of a scope.

(b) The result of applying the iteration to differently sized scopes.

Figure 3: The effect of applying an iteration.

first rule has a probability to be chosen that is four times higher
then the probability of the second rule (i.e. 80% vs. 20%). If the
probability-parameter is omitted, it defaults to 1, i.e. rules are
always stochastic, with a default of using the same probability for
each option. Note that probabilities are automatically normalized
between all applicable options, which interacts nicely with rule
constraints, which we will describe next.

3.6 Rule Constraints

The nature of our integer-sized boxes makes it such that not ev-
ery rule can be applied to every arbitrary box and still produce a
reasonable split. For example, to place crenellations by alternating
stone blocks and empty space, the total length of the box must be
odd, if both ends should begin with an empty space. Our grammar
implementation allows authors to place constraints on rules that
restrict when a rule is applicable to a box associated with the corre-
sponding non-terminal symbol. These constraints are expressed as
arithmetic comparisons involving the dimensions of the box. For
example, limiting a rule’s applicability to cases where the a box has
even length in its local x-dimension, can written as follows:

@rule(constraint =(Dimension.X%2 == 0))
def N():

other rule content

When another rule refers to N() in its body, the constraints of each
potential rule are evaluated against the actual box the rule should be
applied to, and a random rule is chosen among all applicable rules.
As mentioned above, this rule choice also takes any probabilities
that may be present into account, normalizing them as needed. Con-
straints may make use of any of the Dimension-variables described
above, including Dimension.LARGEST and Dimension.SMALLEST.

The special value Constraints.ELSE can be used to create a con-
straint that matches if and only if the constraint of no other option
for a particular rule does.

Rule constraints have several applications, one being the afore-
mentioned enforcement of divisibility. Additionally, they allow
grammar authors to specify more or less detail depending on the
available space/resolution, making it able to scale structures arbi-
trarily and showing as much detail as possible at each scale. Struc-
tures also often permit different substructures depending on their
overall size. A large castle may make use of more complex towers
than a smaller one might be able to fit.

3.7 Minecraft Editor Integration

While we developed our grammar system with Minecraft as an
application in mind, the actual implementation is agnostic to the
game. Only when we actually need to place concrete blocks in the
world, does the system need any knowledge of the target domain.
For this, our system requires an adapter for each concrete output
domain that performs the actual block placement. In our current
implementation for Minecraft, this adapter takes an entire box, and
fills every voxel contained in that box with a given material. The
second function this adapter needs to provide is a way to construct
the initial box from domain-specific information.

We want to note that the implementation we chose makes our
grammar system very flexible in how it can be used. Instead of using
a domain-specific file format to encode our grammar rules, they are
written directly as python functions, which allows users to use the
full power of the language to create richer structures or simplifying
their grammars in a practical way. At the same time, grammars
defined formally can still be expressed in a straightforward way.
What makes the system particularly attractive, though, is that it can

FDG ’22, September 5-8, 2022, Athens, Greece

be integrated seamlessly with other systems. A level generator may
create biomes and landscape, but then uses a grammar to define
the outlines of cities by defining a box in which the city shall be
contained. That same grammar may then use rules to divide the
city into districts, blocks, and buildings, but calls another generator
to model an organic structure such as a park inside an appropriate
box, instead of using concrete (Minecraft) terminal symbols itself.

In order to more fully demonstrate the capabilities of our system,
we will now discuss several concrete examples of grammar rules
and generated structures.

4 RESULTS

What makes grammars attractive for the procedural modeling of
buildings is that architecture itself is often modular to begin with,
and can be expressed compactly as grammar rules. As a demon-
stration of our Box-Split Grammars we will show how a variety of
ancient Greek temples can be modeled using the grammars, and how
this allows generating variations of these temples. Greek temples
generally consist of a central chamber (the naos) with surrounding
columns, and different styles are named depending on the number
of placement of these columns: The (Greek) number of columns
across the front determines is used as a prefix, indicating whether
a temple has two (distyle), four (tetrastyle), six (hexastyle) or eight
(octastyle) columns across its front. Additionally, the placement of
columns can be indicated with an additional prefix, which includes
columns between the side walls (in antis), columns in front of the
temple (prostyle), columns in front and behind the temple (amphi-
prostyle), or columns surrounding the temple (one row: peripteral,
two rows: dipteral), among others [2]. These definitions can be
combined to describe a concrete temple layout. For example, the
Temple of Athena Nike in Athens is an amphi-prostyle tetrastyle
temple, consisting of an inner chamber with four columns in the
front and four behind the temple. The Parthenon, on the other hand,
is built in the peripetral octastyle, with eight columns along the
front side, with columns all around its perimeter.

To demonstrate the capabilities of our Box-Split Grammars, we
modeled different variations of temples. As a base-line, consider an
amphi-prostyle tetrastyle temple: The floor plan of such a temple
can be split into three parts across its depth: There is a front row
of columns, the naos, and a back row of columns. Either of the two
rows of columns consist of a split into 7 parts across the width of the
temple: Four columns, with three gaps in between them. The naos
itself can be split in the depth dimension, with (from back to front) a
back wall, a center part, and a front part which defines the entrance
of the temple. For our purposes, we will have a simple, empty naos,
and the entrance will consist of two columns. Figure 4 shows how
such a temple floor plan can be modeled as grammar rules, and the
resulting structure. Of course, an actual temple consists of more
than just the floor plan, but our grammar rules are agnostic to the
height of the temple, and we can create a temple of any height by
selecting an appropriately sized box. We can integrate this floor
plan into a larger grammar that includes a base and a roof, and
obtain a full temple, as shown in figure 5.

As mentioned above, a key appeal of grammars is their modular-
ity and correspondence to the structure of the modeled buildings.
For our temple, we have just stated that we would add “a roof”, but

Markus Eger

there are multiple different roof options. Figure 6 shows a compari-
son of four different ways of topping our temple. What makes our
grammars appealing for procedural content generation is that the
rule for each of these options (or others) can each be called roof in
code, which will result in a roof type being chosen at random for
each generated temple, producing variety of output if desired.

On the other hand, as described above, Greek temples are named
for the number of columns that are present across their front, so it
would also be desirable to be able to produce a variety across this
dimension easily. We will describe two approaches how this can be
achieved with our grammars, and their relative trade-offs. First, if it
is desired that the aforementioned styles with 2, 4, 6, or 8 columns
(and not, say, a temple with 26 columns) should ever be generated,
but we want to automatically determine which number of columns
fits evenly into the selected box, we can use rule constraints. For
example, to limit distyle temples to boxes which can be evenly split
into three equal pieces, we can use the following rule constraint:

@rule(constraint=Dimension.X%3 == 0)
def columns ():
with split (Dimension.X, [-1,-1,-1]):

£i11 (), void (), fill ()

Tetrastyle temples would correspondingly use Dimension. X%7
== 0, and similarly for other column counts. The advantage of
this approach is that it uses relative sizes, allowing structures to be
scaled up arbitrarily (e.g. by making a temple twice as big, which
will keep the same proportions). On the other hand, if we have a
box of width e.g. 77, it would permit either a tetrastyle temple with
column width 11, or a hexastyle temple with column width 7, and
the grammar will correctly choose a random applicable layout. The
drawback of this approach is that it requires the enumeration of all
options and the definition of the correct constraints.

The second way to model arbitrary temple-widths is through the
use of iterative rules. We could replace our different column-rules
with the following single rule that first splits off the left delimiter
column, and then alternatingly places an empty space and a column:

@rule (constraint=Dimension.X%2 == 1)
def columns ():
with split(Dimension.X, [1,-1]):
fill ()
itercolumns ()

@rule
def itercolumns ():
items = split(Dimension.X, [1,1],
repeat=True)
while items:
void (), fill ()

The advantage of this approach is that this rule covers all cases,
and even includes styles that may not actually have been used in
ancient Greece, such as a temple with 3 columns. If this is undesire-
able, additional constraints may be placed on the rule. Note that
the rule already has a constraint to ensure that the width of the
box is odd, which is necessary to ensure placement of columns on

Instant Architecture in Minecraft using Box-Split Grammars FDG ’22, September 5-8, 2022, Athens, Greece

@rule
def columns ():
with split (Dimension.X,[1,1,1,1,1,1,1]):
fill (), void(), fill(),void()
fill (), void (), fill ()

@rule
def chamber ():
with split (Dimension.X, [1, -1, 1]):
fill (), void (), fill()

@rule
def naos ():
with split (Dimension.Z, [1, -1, 1]):
columns (), chamber (), fill ()

@rule
def floorplan ():
with split (Dimension.Z,
[1, 1, -1, 1, 1]):
columns (), void () ,naos (), void (), columns ()

(a) Grammar rules. (b) The generated floor plan.

Figure 4: An amphi-prostyle tetrastyle temple floor plan expressed as a Box-Split Grammar

(a) The Temple of Athena Nike (picture is in the public domain). (b) A generated version of the temple using Box-Split Grammars.

Figure 5: Side-by-side comparison of a real temple and a generated version.

Figure 6: Different roof options for our temple: No roof, flat top, steep, moderate (from left to right).

FDG ’22, September 5-8, 2022, Athens, Greece

Markus Eger

Figure 7: Some floor plans generated by a simple temple grammar, from left to right: peripteral hexastyle, distyle in antis,
hexastyle amphi-prostyle (top row), peripteral octastyle, tetrastyle amphi-prostyle, hexastyle prostyle (bottom row). Note that

the entrance of the naos also has multiple variations.

both ends. The drawback of this rule is that columns are always of
width 1, which makes it harder to scale the temple.

Finally, addressing different column placement, such prostyle,
amphi-prostyle and peripteral only require minor modifications:
Columns are always present at the front of the temple, and we can
have the naos either cover the entire rest of the scope, or split it
to have columns behind or around it (note: columns at the side of
the naos can be achieved with the same columns rules as above,
by reorienting the scope). Once again, we place constraints on
the rule to ensure that the naos has a reasonable width and depth,
and define multiple rules with the same name. If we put all these
modules together, we end up with a grammar of 14 rules that can
generate a wide variety of temple floor plans, as show in figure 7

Note that all the user does is select an arbitrarily sized box,
and the grammar randomly generates a temple that fits within
that scope. To generate the replication of the Parthenon shown in
figure 1 we limited the grammar to the rules corresponding to a
peripteral octastyle to control what was being generated.

For this article, we have limited our demonstration to ancient
Greek temples, but we believe this class of structures serves as a
good demonstration of the broader capabilities of our system. Figure
8 shows a castle outline as another example we have been working
on. We have also implemented a second backend, which uses pixels
as the basic building block (with the z-axis representing occlusion)
and writes its result to an image file. Figure 9 shows an example of a
repeating spiral-pattern produced using this backend. Adapting the

Figure 8: The outline of a castle generated by a grammar.

system for image output required only to provide means to create
an initial bounding box and set pixels in it, totaling to about 35
lines of python, most of which were boilerplate function signatures
and similar. As stated above, a key feature of our approach is that
it integrates nicely within a larger ecosystem, making it possible to
apply in its areas of strength while mitigating some of its limitations,
which we will discuss in the next section.

Instant Architecture in Minecraft using Box-Split Grammars

O]

5] 5]

03030340439
034040434040

=]

G
0]} 10]
0]} 10]

L C1C1E1E
CC1 011 C

]| 6] 60] 6

Figure 9: A spiral pattern produced with grammars using an
Image-backend.

a flu fn
0300

=]
=]

33333

4034040
s L

a0
La

a0
La fu fn

La |
La |
=]

043
00

s Ln 10300
EEEIDEDE

=]

5 CONCLUSION AND FUTURE WORK

We have presented a formulation of shape grammars on axis-aligned
boxes of integer-sizes that is suitable for the procedural modeling of
structures in an environment such as Minecraft. Our grammars are
expressed as python functions, and can use split and reorient op-
erations to divide a given box into smaller boxes that are then filled
with materials. Grammar rules are chosen non-deterministically
with controllable probabilities, and can have constraints placed
on them. Our system is designed to be used within a larger gen-
erator, allowing the use of any given box, or to use a box that is
deemed a “terminal symbol” by the grammar with another gener-
ator. To demonstrate our system, we have modeled variations of
Greek temples in the system, mapping different building styles to
grammar rules which allow arbitrary recombination. Our goal was
a demonstration of a variety of features of our grammar system
as opposed to a fully faithful replication of all aspects of ancient
Greek temples. Upon publication of this article, we will also make
our system available on github. An aspect of our system that we
have yet to study further stems from its representation of grammars
as python functions. On one hand, each formal grammar rule can
translated to its python equivalent in a straightforward manner,
which would allow a sort of meta-generation of grammar rules using
some other generator. On the other hand, the functions that make
up our grammar “play nicely” with ordinary control flow constructs
(the repeat-option of the split operation is one example of this),
and we would like to explore what other possibilities this integra-
tion opens up in future work. However, as Alexander noted, “A city
is not a tree” [1], indicating that a simple, context-free grammar
model may not be sufficient to model all the intricacies of a modern
(or ancient) city-design. In particular, cities are often designed in

FDG ’22, September 5-8, 2022, Athens, Greece

an interconnected way, rather than purely top-down. We may be
able to determine which lots to place individual buildings in, but
we then, subsequently, want to align doors or windows or floors
across lots. Relatedly, we assume that we are starting with an empty
box, but in many practical applications (and surely in Minecraft),
there often is existing geometry that should be integrated into our
building designs. Both of these challenges are related to providing
context to rules, which — as the name implies — context-free gram-
mars are not sufficiently powerful for. In future work, we want to
explore how to integrate such existing blocks, whether they come
from the level, or were produced by other rules, into the generation
of structures. An example application would be the generation of
roads within a town, which has to take into account elevation, and
where bridges would be suitable.

REFERENCES

[1] Christopher Alexander. 2013. A city is not a tree. Routledge.

[2] Sir Banister Fletcher. 1961. A History of Architecture on the Comparative Method.
[London]: University of London, Athione Press.

[3] Kate Compton, Ben Kybartas, and Michael Mateas. 2015. Tracery: an author-
focused generative text tool. In International Conference on Interactive Digital
Storytelling. Springer, 154-161.

[4] Michael Cerny Green, Christoph Salge, and Julian Togelius. 2019. Organic build-
ing generation in minecraft. In Proceedings of the 14th International Conference
on the Foundations of Digital Games. 1-7.

[5] Jan Halatsch, Antje Kunze, and Gerhard Schmitt. 2008. Using shape grammars
for master planning. In Design Computing and Cognition’08. Springer, 655-673.

[6] Sven Havemann and Dieter W Fellner. 2005. Generative mesh modeling. (2005).

[7] Bernhard Hohmann, Sven Havemann, Ulrich Krispel, and Dieter Fellner. 2010. A
GML shape grammar for semantically enriched 3D building models. Comput-
ers & Graphics 34, 4 (2010), 322-334. https://doi.org/10.1016/j.cag.2010.05.007
Procedural Methods in Computer Graphics Illustrative Visualization.

[8] Guangyin Jia and Kaiju Liao. 2017. 3D modeling based on CityEngine. In AIP
Conference Proceedings, Vol. 1820. AIP Publishing LLC, 050001.

[9] Pascal Miiller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool.
2006. Procedural modeling of buildings. In ACM SIGGRAPH 2006 Papers. 614-623.

[10] Chiara Piccoli. 2013. CityEngine for Archaeology. In Proceedings of the Mini
Conference 3D GIS for Mapping the via Appia, Amsterdam, The Netherlands, Vol. 19.

Przemyslaw Prusinkiewicz and Aristid Lindenmayer. 1990. Graphical modeling
using L-systems. In The Algorithmic Beauty of Plants. Springer, 1-50.

Christoph Salge, Claus Aranha, Adrian Brightmoore, Sean Butler, Rodrigo Canaan,
Michael Cook, Michael Cerny Green, Hagen Fischer, Christian Guckelsberger,
Jupiter Hadley, et al. 2021. Impressions of the GDMC AI Settlement Generation
Challenge in Minecraft. arXiv preprint arXiv:2108.02955 (2021).

Christoph Salge, Michael Cerny Green, Rodgrigo Canaan, and Julian Togelius.
2018. Generative design in minecraft (gdmc) settlement generation competition.
In Proceedings of the 13th International Conference on the Foundations of Digital

Games. 1-10.

George Stiny and James Gips. 1971. Shape grammars and the generative specifi-
cation of painting and sculpture.. In IFIP congress (2), Vol. 2. 125-135.

Wolfgang Thaller, Ulrich Krispel, René Zmugg, Sven Havemann, and Dieter W
Fellner. 2013. Shape grammars on convex polyhedra. Computers & Graphics 37,
6 (2013), 707-717.

Levi van Aanholt and Rafael Bidarra. 2020. Declarative procedural generation
of architecture with semantic architectural profiles. In 2020 IEEE Conference on

Games (CoG). 351-358. https://doi.org/10.1109/CoG47356.2020.9231561

Peter Wonka, Michael Wimmer, Francois Sillion, and William Ribarsky. 2003.
Instant architecture. ACM Transactions on Graphics (TOG) 22, 3 (2003), 669-677.

—
_

=
&

[13

[14

[15

[16

(17

https://doi.org/10.1016/j.cag.2010.05.007
https://doi.org/10.1109/CoG47356.2020.9231561

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Box-Split Grammars in Minecraft
	3.1 Boxes
	3.2 Split Rules
	3.3 Coordinate Reorientation
	3.4 Iteration
	3.5 Probabilistic Rules
	3.6 Rule Constraints
	3.7 Minecraft Editor Integration

	4 Results
	5 Conclusion and Future Work
	References

